Quantum Computing with IBM Quantum

Jed Brody
Emory University

Fundamentals

- A measurement of a qubit in the "computational basis" yields 0 or 1
- Prior to measurement, a qubit may be in a superposition, $\alpha|0\rangle+\beta|1\rangle$:
- $|\alpha|^{2}+|\beta|^{2}=1$
- $|\alpha|^{2}$ is the probability of measuring 0
- $|\beta|^{2}$ is the probability of measuring 1
- Unitary operators called "gates" manipulate qubits to change the amplitudes (coefficients) of $|0\rangle$ and $|1\rangle$

Example: NOT gate and Z gate

- $x|0\rangle=|1\rangle$
$|0\rangle-|1\rangle$
- $x|1\rangle=|0\rangle$

$\cdot X(\alpha|0\rangle+\beta|1\rangle)=\alpha X|0\rangle+\beta X|1\rangle=\alpha|1\rangle+\beta|0\rangle$
- $Z|0\rangle=|0\rangle$
- $Z|1\rangle=-|1\rangle$

Example: Hadamard gate

- $H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$

$$
|0\rangle-H-\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

- $H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

$$
|1\rangle-H-\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

- $H(\alpha|0\rangle+\beta|1\rangle)=\alpha H|0\rangle+\beta H|1\rangle=\frac{\alpha}{\sqrt{2}}(|0\rangle+|1\rangle)+\frac{\beta}{\sqrt{2}}(|0\rangle-|1\rangle)$

$$
=\frac{1}{\sqrt{2}}[(\alpha+\beta)|0\rangle+(\alpha-\beta)|1\rangle]
$$

Controlled NOT

- Almost every textbook writes top qubit first (I follow this convention)
- IBM Quantum writes top qubit last (very unconventional)
- CNOT $|0\rangle|0\rangle=|0\rangle|0\rangle$
- CNOT $|0\rangle|1\rangle=|0\rangle|1\rangle$
- CNOT $|1\rangle|0\rangle=|1\rangle|1\rangle$
- CNOT $|1\rangle|1\rangle=|1\rangle|0\rangle$
- CNOT $|\mathrm{x}\rangle|\mathrm{y}\rangle=|\mathrm{x}\rangle|\mathrm{y} \oplus \mathrm{x}\rangle$
- $\operatorname{CNOT}(\alpha|0\rangle|0\rangle+\beta|0\rangle|1\rangle+\gamma|1\rangle|0\rangle+\delta|1\rangle|1\rangle)=\alpha|0\rangle|0\rangle+\beta|0\rangle|1\rangle+\gamma|1\rangle|1\rangle+\delta|1\rangle|0\rangle$

Quantum Entanglement

- Initial state: $|0\rangle|0\rangle$
- After the $\mathrm{H}: \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|0\rangle)$
- After the CNOT: $\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle)$

Quantum Dense Coding

(figure from Garcia-Martin and Sierra, arxiv.org/pdf/1712.05642.pdf)

1. Alice and Bob meet to create a pair of entangled qubits
2. Alice departs and encodes two bits, x_{1} and x_{0}, into third qubit from top
3. Alice sends this one qubit (encoding two bits) to Bob to decode

Deutsch's problem

- Consider a circuit with a single-bit input x and a single-bit output $f(x)$
- There are 4 possible functions (truth tables):

x	$f(x)$
0	0
1	0

x	$f(x)$
0	0
1	1

x	$f(x)$
0	1
1	0

x	$f(x)$
0	1
1	1

- How to determine experimentally if $f(x)$ is a constant (0 or 1)?
- In classical (non-quantum) circuit, we'd have to take the time to input both possible values of x, one after the other
- Deutsch's solution uses just a single application of quantum circuit

Oracle operator: quantum gate incorporating $f(x)$

- Define oracle operator $\mathrm{U}_{\mathrm{f}}|\mathrm{x}\rangle|\mathrm{y}\rangle=|\mathrm{x}\rangle|\mathrm{y} \oplus \mathrm{f}(\mathrm{x})\rangle$

- All four oracles (maybe give students two):
- If $f(x)=0, U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus 0\rangle=|x\rangle|y\rangle ; U_{f}$ is nothing
- If $f(x)=1, U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus 1\rangle=|x\rangle|\bar{y}\rangle ; U_{f}$ is NOT on bottom qubit
- If $f(x)=x, U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus x\rangle=C N O T|x\rangle|y\rangle$; U_{f} is CNOT
- If $\mathrm{f}(\mathrm{x})=\bar{x}, \mathrm{U}_{\mathrm{f}}|\mathrm{x}\rangle|\mathrm{y}\rangle=|\mathrm{x}\rangle|\mathrm{y} \oplus \bar{x}\rangle=|\mathrm{x}\rangle|\bar{y} \oplus \mathrm{x}\rangle=\mathrm{CNOT}|\mathrm{x}\rangle|\bar{y}\rangle$; U_{f} is NOT and CNOT, order flexible

Deutsch's Algorithm

- $\left|\phi_{0}\right\rangle=|0\rangle|1\rangle$
- $\left|\phi_{1}\right\rangle=H|0\rangle H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=\frac{1}{2}(|0\rangle|0\rangle-|0\rangle|1\rangle+|1\rangle|0\rangle-|1\rangle|1\rangle)$
- $\left|\phi_{2}\right\rangle=U_{f}\left|\phi_{1}\right\rangle=\frac{1}{2}(|0\rangle|\mathrm{f}(0)\rangle-|0\rangle|1 \oplus \mathrm{f}(0)\rangle+|1\rangle|\mathrm{f}(1)\rangle-|1\rangle|1 \oplus \mathrm{f}(1)\rangle)$
- $\left|\phi_{3}\right\rangle=\frac{1}{2}(\mathrm{H}|0\rangle|\mathrm{f}(0)\rangle-\mathrm{H}|0\rangle|1 \oplus \mathrm{f}(0)\rangle+\mathrm{H}|1\rangle|\mathrm{f}(1)\rangle-\mathrm{H}|1\rangle|1 \oplus \mathrm{f}(1)\rangle)$

Measure top qubit to see if $f(x)$ is constant

- If $f(x)$ is constant: $f(0)=f(1) \Rightarrow$
$\left|\phi_{3}\right\rangle=\frac{1}{2}(\mathrm{H}|0\rangle|\mathrm{f}(0)\rangle-\mathrm{H}|0\rangle|1 \oplus \mathrm{f}(0)\rangle+\mathrm{H}|1\rangle|\mathrm{f}(0)\rangle-\mathrm{H}|1\rangle|1 \oplus \mathrm{f}(0)\rangle)$
$=\frac{1}{2}(H|0\rangle+H|1\rangle)(|f(0)\rangle-|1 \oplus f(0)\rangle)$
$=\frac{1}{\sqrt{2}}|0\rangle(|f(0)\rangle-|1 \oplus f(0)\rangle) \Rightarrow$ top qubit is $|0\rangle$
- If $f(x)$ is not constant: $f(1)=1 \oplus f(0) \Rightarrow$

$$
\begin{aligned}
& \left|\phi_{3}\right\rangle=\frac{1}{2}(\mathrm{H}|0\rangle|\mathrm{f}(0)\rangle-\mathrm{H}|0\rangle|1 \oplus \mathrm{f}(0)\rangle+\mathrm{H}|1\rangle|1 \oplus \mathrm{f}(0)\rangle-\mathrm{H}|1\rangle|\mathrm{f}(0)\rangle) \\
& =\frac{1}{2}(\mathrm{H}|0\rangle-\mathrm{H}|1\rangle)(|\mathrm{f}(0)\rangle-|1 \oplus \mathrm{f}(0)\rangle) \\
& =\frac{1}{\sqrt{2}}|1\rangle(|\mathrm{f}(0)\rangle-|1 \oplus \mathrm{f}(0)\rangle\rangle \Rightarrow \text { top qubit is }|1\rangle
\end{aligned}
$$

Resources

- https://quantum-computing.ibm.com/
- Qiskit textbook: https://qiskit.org/textbook/preface.html
- My favorite quantum computing textbooks:
- De Lima Marquezino et al. (2019), A Primer on Quantum Computing
- Zygelman (2018), A First Introduction to Quantum Computing
- Garcia-Martin and Sierra, "Five Experimental Tests on the 5-Qubit IBM Quantum Computer": https://arxiv.org/abs/1712.05642
- Recent AJP papers:
- Kain, Searching a quantum database with Grover's search algorithm, 2021: https://aapt.scitation.org/doi/abs/10.1119/10.0004835
- Brody and Guzman, Calculating spin correlations with a quantum computer, 2020: https://aapt.scitation.org/doi/abs/10.1119/10.0001967
- Please feel free to contact me: jbrody@emory.edu. I'm not an expert, but I'd be delighted to hear from you!

