Nonlinear Dynamics of Self-Sustained Oscillators

Building Advanced Technical Competencies
Based on Fundamental Physics

Randall Tagg & Masoud Asadi-Zeydabadi University of Colorado Denver

Students
Nhat Huang, Courtney Fleming, Tyler Sanford

Supported in part by NSF grant 1624882 as a part of the APS PIPELINE project https://epic.aps.org .

There is a missing piece in the standard repertoire for "vibrations & waves".

- Free oscillation of damped linear oscillators
 - Mass on a spring
 - Small-amplitude pendulum
 - RLC circuits
- Forced linear oscillators and resonance

The Repertoire

- Nonlinear restoring force
 - Duffing oscillator
 - Large amplitude pendulum
- Chaos in forced systems

but seldom any mention of

Self-Sustained Oscillation

The design and use of oscillators is important to many technologies and innovations.

- Value conceived: a lower-cost stable audio oscillator: Wien-Bridge oscillator stabilized with a light bulb. (Hewlett's master's thesis).
- Value created: the HP 200A, Hewlett-Packard's first successful product, U.S. patent 2,268,872 (1939).
- Value conveyed: 8 units sold to Disney to test recording equipment during production of the film "Fantasia".

Connecting Fundamental Physics to Innovation

APS PIPELINE Network

- Six member institutions: Loyola University
 Maryland, Rochester Institute of Technology, Wright
 State, UC Denver, George Washington University, and
 William & Mary.
- APS PIPELINE
- Advised by experts from established physics entrepreneurship programs (e.g. Carthage College, Case Western, Kettering University)
- Goals are:
 - to deliver tested PIE curriculum to a wider cohort of practitioners.
 - to assess of effects of PIE implementation on student and faculty attitudes towards innovation and entrepreneurship, and examine barriers to PIE implementation
 - to build a community of expert practitioners who can mentor other institutions.
- Activities are varied in scope and resources needed; institutions varied in culture and resources available. For more information and resources, see:

https://epic.aps.org

Physics, Innovation & Entrepreneurship

The central question: What converts a steady power source into an oscillating signal?

A Necessary Condition for Sustained Oscillation

Barkhausen criterion

$$\begin{split} \widehat{\boldsymbol{V}}_o &= G(\omega) \widehat{\boldsymbol{V}}_i. \\ \widehat{\boldsymbol{V}}_i &= H(\omega) \widehat{\boldsymbol{V}}_o. \end{split} \longrightarrow \begin{array}{l} \widehat{\boldsymbol{V}}_i &= G(\omega) H(\omega) \widehat{\boldsymbol{V}}_i. \longrightarrow & G(\omega) H(\omega) = 1. \\ & \text{A self-consistency criterion.} \end{split}$$

Wien Bridge oscillator

$$G \equiv 1 + \frac{R_a}{R_b}.$$

$$H(\omega) = \frac{1}{3 + j\left(\omega RC - \frac{1}{\omega RC}\right)}.$$

$$G(\omega)H(\omega) = 1.$$

$$\frac{G}{3 + j\left(\omega RC - \frac{1}{\omega RC}\right)} = 1.$$

$$G = 3. \qquad \frac{R_a}{R_b} = 2.$$

$$\omega = \frac{1}{1 + \frac{1}{2}} = \omega.$$

Finding a Sufficient Condition for Sustained Oscillation

Time-domain analysis

This is the damped harmonic oscillator equation with the possibility of "negative damping" when G > 3.

Equivalent system of 1st order differential equations

$$\frac{dv}{dt} = \omega_0 w.$$

$$\frac{dw}{dt} = -\omega_0^2 v + \left(\frac{R_a}{R_b} - 2\right) \omega_0 w.$$

Time series and phase portraits

Define a bifurcation parameter $\varepsilon = R_a/R_b - 2$

Introduce nonlinearity through self-heating of the tungsten filament R_b , thus reducing the gain $R_a/R_b + 1$

Simulation over 10000 periods

3D phase portrait: Matryoshka baskets

Signal after transients have settled: a *limit cycle*.

Long-time behavior

$$T - T_0 \approx \frac{1}{9R_{b0}K_{eff}} \frac{1}{2}V^2$$
 where $V^2 = v^2 + w^2$.

$$V^2 = v^2 + w^2.$$

The dynamical system reduces to the Rayleigh – van der Pol equations

$$\frac{dv}{dt} = \omega_0 w.$$

$$\frac{dw}{dt} = -\omega_0 v + \left(\epsilon - \frac{1}{v_*^2} (v^2 + w^2)\right) \omega_0 w.$$

Not the van der Pol equations as is commonly assumed!

Transform to radial coordinates

$$v = r \cos \theta$$
.
 $w = r \sin \theta$.

Radial form of Rayleigh – van der Pol equations

$$\frac{dr}{dt} = \left(\epsilon - \frac{r^2}{v_*^2}\right) \omega_0 r \sin^2 \theta.$$

$$\frac{d\theta}{dt} = -\omega_0 + \left(\epsilon - \frac{r^2}{v_*^2}\right) \omega_0 \cos \theta \sin \theta.$$

$$r = v_* \sqrt{\epsilon}.$$

$$\theta = -\omega_0 t.$$

$$\theta = -\omega_0 t.$$

Growth of amplitude with parameter $\varepsilon = R_a/R_b - 2$

Initial dependence $\sim \epsilon^{1/2}$

Experimental setup

Transient squegging

Long-term finite amplitude signal and its spectrum

Include a differentiator

Time signals and phase portrait (xy mode)

Amplitude growth with parameter ϵ ... needed <0.1 Ω resolution

Slope of 0.491 ± 0.011

Resistance range 107.19 Ω to 108.67 Ω

Topics for research & innovation

- The strange occurrence of persistent squegging when using the "wrong" type of capacitor
- Enhanced sensitivity to noise near the bifurcation: possible use for predicting changes.
- Marginal oscillator detectors, including models of the inner ear.
- Spontaneous changes in phases in coupledoscillator systems, with applications to actuator systems and robotics.

Conclusions

- The Wien-bridge oscillator experiment develops important insights into the nonlinear dynamics of oscillators:
 - Bifurcations
 - Limit cycles
 - Scaling laws
- Laboratory work and simulation combine to enhance skills in
 - Circuit construction and measurement
 - Numerical modeling of physical systems (electronic & thermal)
- This equips students with a foundation for research and technical innovation.