Technical Repertoire – Areas, Groups, and Topics

DRAFT Randall Tagg 29-October-2019 Last Modified 05-July-2021

Contents

- 00 Broad overviews of technical resources
- 01 Design and early prototyping
- 02 Safety and hazardous materials
- 03 Hand tools and handheld power tools
- 04 Materials
- 05 Fabrication
- 06 Chemical methods
- 07 Energy systems
- 08 Measurement and sensors
- 09 Spectroscopic and analytical instrumentation
- 10 Structural systems
- 11 Buildings, labs, and work areas
- 12 Geotechnics, hydraulics, and land use design
- 13 Machines and mechanisms
- **14 Actuators**
- 15 Vehicles
- 16 Rigging and materials handling
- 17 Rotating, vibrating, and chaotic systems
- 18 Sound and ultrasound
- 19 Fluid systems
- 20 Thermal systems
- 21 Vacuum and high pressure
- 22 Electronic test and measurement
- 23 Analog electronics and electronics construction
- 24 Radio-frequency and microwave systems
- 25 Digital logic, FPGAs, microprocessors, and microcontrollers
- 26 Computer-integrated data acquisition and control
- 27 Human interfaces
- 28 Control systems
- 29 Mechatronics, robotics, and automation
- 30 Computers, clusters, and servers
- 31 Memory, data storage, and input-output
- 32 High data throughput, neural networks, and artificial intelligence
- 33 Signal processing
- 34 Networks and communication systems
- 35 Geospatial systems and internet-of-things
- 36 Optics and optical systems
- 37 Lasers and photonics
- 38 Imaging and remote sensing
- 39 Electric fields and plasmas
- 40 Magnetic fields and superconductors
- 41 Charged particle optics and instruments
- 42 Nuclear and elementary particle methods
- 43 Microscopy and micromanipulation
- 44 Thin films, microfabrication, and microdevices
- 45 Nanoscale microscopy and measurement
- 46 Nanotechnology and atom manipulation
- 47 Molecular biology methods
- 48 Cell and microbiology methods

49 Plant and animal biology methods
50 Biomedical devices, instrumentation, and imaging

51 Field work and outdoor skills

52 Extreme environments and space

99 Other

00 Broad overviews of technical resources

This heading is mainly for categorizing books and other reference materials that provide a broad awareness of technical options.

- a How things work
- b How things are made
- c Inventions
- d Artifacts, useful objects, and dictionaries of things
- e Industries and occupations
- f Future society and technologies
- g Applied physics overviews
- h Engineering overviews
- i Technology overviews
- j Scientific instruments and apparatus overviews

01 Design and early prototyping

- a Estimation and dimensional analysis
- b Requirements discovery, specification, and refinement
- c Systems thinking in design
- d Models of the engineering design process
- e Industrial engineering & design aesthetics
- f Reverse engineering
- g Design research
 - 01 Literature search
 - 02 Patent search
 - 03 Design source books and handbooks
 - 04 Designers resource websites
 - .01 Hyperphysics
 - .02 Engineering Toolbox
 - .03 Engineering 360 / GlobalSpec
 - 05 Manufacturers' websites and catalogs
 - 06 Device data sheets
 - 07 Equipment manuals
- h Design and development record keeping
 - 01 Development notebooks
 - 02 Photo documentation
 - 03 Code commenting
 - 04 Data sheets and design specification documents
 - 05 User manual writing and illustration
- i Design drawings
 - 01 Sketching and drawing
 - .01 Pencil and paper freehand drawing
 - .02 Raster graphics application software
 - .03 Vector graphics application software
 - 02 Drafting
 - 03 Tolerancing and dimensioning
 - 04 2D CAD and standard file types
 - 05 3D CAD and standard file types
 - 06 Assembly drawings and animations
 - 07 Schematics
 - .01 Electrical
 - .02 Pneumatic
 - .03 Plumbing
 - 08 System block diagrams
 - 09 Technical illustration
 - 10 Patent drawings
- j Design repositories (GitHub, etc.)
- k Open design
- I Graphic, poster, brochure and exhibit design
- m Engineering analysis & simulation software
 - 01 Stress
 - 02 Flow
 - 03 Concentration
 - 04 Temperature
 - 05 Electromagnetic fields

- 06 Optical ray tracing
- 07 System dynamics
- 08 Circuit simulation
- n Making mockups and early prototypes
 - 01 Use of paper, cardboard & other art supplies
 - 02 Scale models
 - 03 Toy construction kits
 - 04 Tinkering and repurposing to create prototypes
- o Design for x
 - 01 Usability
 - 02 Sustainability
 - 03 Manufacturability
 - 04 Assembly
 - 05 Reliability and maintainability
 - 06 Developing economies
- p Human factors and universal design
- q Nature-inspired (biomimetic) design

02 Safety and hazardous materials

- a Trauma and injury modeling
- b First aid
 - 01 Cuts and lacerations
 - 02 Major bleeding
 - 03 Object in eye
 - 04 Broken limbs & sprained joints
 - 05 Internal injury
 - 06 Burns
 - 07 Chemical burns
 - 08 Hypothermia
 - 09 Shock
 - 10 Electrical shock
 - 11 Resuscitation: CPR, AED's, etc.
 - 12 Poisons: ingested, inhaled
- c Specific safety issues
 - 01 Fire
 - 02 Torch and burner
 - 03 Explosion
 - 04 Hot object and hot fluid
 - 05 Cold object and cold fluid
 - 06 Electrical shock and burn
 - 07 Lifting
 - 08 Slipping and falling
 - 09 Crushing and falling object
 - 10 Sharp object & ejecta
 - 11 Eyes
 - 12 Rapid egress and accidental shut-in
 - 13 Machinery
 - 14 Laser
 - 15 Intense and invisible light
 - 16 Sound and ultrasound
 - 17 Distraction
 - 18 Electromagnetic field
 - 19 Magnet
 - 20 Lightning
 - 21 Radiation
 - 22 Toxic gas and asphyxiation
 - 23 Particulates
 - 24 Chemical burns
 - 25 Chemical toxicity
 - 26 Biohazard
 - 27 Food
 - 28 Sports
 - 29 Human assault
 - 30 Active shooter
 - 31 Animals
 - 32 Geohazards
- d Safety locations and their operating rules
 - 01 Laboratory
 - 02 Shop
 - 03 Studio

- 04 Classroom
- 05 Home
- 06 Vehicle
- 07 Construction site
- 08 Water (pool, river, lake, ocean)
- 09 Medical facility
- 10 Farm
- 11 Outdoors

e Safety signs and labels

- 01 Emergency contacts and procedures
- 02 Evacuation routes and exit signs
- 03 NFPA Hazard Identification signs
- 04 Specific hazard signs
 - .01 Laser-in-use
 - .02 Radiation hazard
 - .03 Wet floor
- 05 Container labels

f Personal protective equipment (PPE)

- 01 Clothing & aprons
- 02 Gloves
- 03 Helmets
- 04 Glasses & goggles
- 05 Face shields
- 06 Back braces
- 07 Knee shin elbow pads
- 08 Shoes and boots
- 09 Dust masks
- 10 Respirators
- 11 Ear plugs or earmuffs

g Hazard detection and alarms

- 01 Fire & smoke detectors
- 02 Hazardous gas detectors
- 03 Invisible light indicators
- 04 Light meters
- 05 Sound level meters
- 06 Ventilation flow meter
- 07 General alarm switches
- 08 Intrusion alarm
- 09 Geiger counter
- 10 Radiation dose meter

h Emergency response equipment

- 01 Fire extinguishers
- 02 Fire suppression system (sprinklers etc.)
- 03 Fire blanket
- 04 Emergency lighting
- 05 Hand rinse water
- 06 Eye wash
- 07 Shower
- 08 Escape ladders
- 09 Spill clean-up kits (e.g. for mercury)

i Other safety equipment

01 Good lighting (building code)

- 02 Good ventilation (building code)
- 03 Anti-skid maps
- 04 Fire doors
- 05 Access control
- 06 Motion sensors
- 07 CCTV monitors
- 08 Safety shields
- 09 Moving machinery covers
- 10 Secure mounts for gas cylinders
- 11 Fume hood
- 12 Glove box
- 13 Remote manipulators
- 14 Fume and smoke snorkel
- 15 Laser cutter exhaust duct
- 16 Dust collectors
- 17 Pump and compressor exhaust oil filters
- 18 Room air purge
- 19 Eyeglass sanitizer
- 20 Autoclave
- 21 Pipette bulbs & siphon pumps
- 22 Sharps disposal containers
- 23 Heat sinks or holders for hot tools
- 24 Grounded outlets
- 25 Ground fault interrupters
- 26 Fuses and circuit breakers
- 27 Overheat cutoff switches
- 28 Motion limit switches
- 29 Equipment cover interlock switches
- 30 Pressure relief valves

j Hazardous materials

- 01 Material Safety Data Sheets
- 02 Hazardous waste disposal
- 03 Chemical spills

k Disaster preparedness

- 01 Emergency communications
- 02 Emergency warning systems
- 03 Emergency evacuations
- 04 Emergency shelters
- 05 Tornado
- 06 Hurricane and typhoon
- 07 Earthquake
- 08 Wildfire
- 09 Flood
- 10 Tsunami
- 11 Landslide
- 12 Bomb
- 13 Epidemic or large-scale biohazard

03 Hand tools and handheld power tools

- a Hand tools
 - 01 Torque applying hand tools
 - .01 Screwdrivers
 - .02 Nut drivers
 - .03 Allen keys
 - .04 Fixed wrenches
 - .05 Adjustable wrenches
 - 02 Grasping and holding hand tools
 - .01 Tweezers
 - .02 Tongs
 - .03 Pliers
 - .04 Vise-grips
 - 03 Impacting hand tools
 - .01 Hammers
 - .02 Punches
 - .03 Chisels
 - 04 Force concentrating tools for cutting
 - .01 Knives
 - .02 Scissors and shears
 - .03 Awls
 - .04 Bores
 - .05 Tubing cutters
 - .06 Metal & plastic saws
 - .07 Abrasive saws
 - .08 Wood saws
 - .09 Wire cutters & strippers
 - .10 Diagonal cutters
 - .11 Sheet metal shears
 - .12 Sheet metal nibblers
 - .13 Greenlee punches
 - 05 Force concentrating tools for material removal
 - .01 Files
 - .02 Planes
 - .03 Abrasive papers
 - .04 Abrasive saws
- b Clamps, jigs and fixtures
 - 01 Clamps
 - .01 C-clamps
 - .02 Spring clamps
 - .03 Wood clamps
 - 02 Bench vises
 - 03 Hobby and precision-work vises
 - 04 Portable work-tables
- c Jacks, winches, presses, and rams

See 16 Rigging, materials handling& storage for jacks and winches See 21 Vacuum and high pressure for presses & rams

- d Handheld electric power tools
 - 01 Power screwdriver
 - 02 Drills
 - 03 Circular saw
 - 04 Reciprocating saw

- 05 Saws-all
- 06 Rotary cutter abrasive cutter
- 07 Sander

e Handheld air power tools

- 01 Torque driver
- 02 Impact wrench
- 03 Drills
- 04 Hammers
- 05 Sanders
- 06 Cutters

f Fine working and specialty hand tools

- 01 Magnifiers and loupes
- 02 Fine tweezers
- 03 Jewelers files
- 04 Fine saws
- 05 Fine screwdrivers
- 06 Fine wrenches
- 07 Precision cutting and carving tools
- 08 Scalpels
- 09 Dissecting tools
- 10 Watchmakers tools

g Fine working and specialty power tools

- 01 High speed rotary tool
- 02 Engraver
- 03 Fine scroll saw

h Outdoor tools - hand

- 01 Shovels
- 02 Post hole diggers
- 03 Earth augers
- 04 Rakes
- 05 Pitchforks
- 06 Tree saws
- 07 Scythes & weed cutters
- 08 Axes
- 09 Picks
- 10 Fencing tools
 - .01 Fence pullers
 - .02 Post pounders
 - .03 Fence wire cutters

i Outdoor tools – power

- 01 Mowers
- 02 String trimmers
- 03 Hedge cutters
- 04 Leaf blowers
- 05 Chain saws
- 06 Wood chippers

04 Materials

- a Metals
 - 01 Standard stock shapes and sizes
 - 02 Steels
 - 03 Aluminum alloys
 - 04 Copper alloys
 - .01 Copper
 - .02 Brass
 - .03 Bronze
 - 05 Titanium
 - 06 Magnesium
 - 07 Zinc
 - 08 Tin
 - 09 Lead
 - 10 Refractory metals
 - .01 Niobium
 - .02 Molybdenum
 - .03 Tantalum
 - .04 Tungsten
 - .05 Rhenium
 - 11 Noble and precious metals
 - .01 Gold
 - .02 Silver
 - .03 Platinum
 - .04 Palladium
 - .05 Iridium
 - .06 Osmium
 - .07 Rhodium
 - .08 Ruthenium
 - 12 Other metals
- b Ceramics, gems and glasses
- c Semiconductor materials
- d Polymers plastics and elastomers
 - 01 Thermoplastics
 - 02 Thermosets
 - 03 Elastomers
- e Polymer Composites
 - 01 Polymer matrix
 - 02 Metal matrix
 - 03 Ceramic matrix
 - 04 Carbon fiber
- f Wood and textiles
- g Soft & fluid materials
- h Structured materials
- i Biomaterials
 - See 50 Biomedical devices...
- j Materials physical properties
- k Materials mechanical properties and continuum mechanics

See also 10 Structural systems: strength of materials

01 Tensile testing

- I Materials electrical and magnetic properties
 - See 23 Electronics design and construction See 24 Radio frequency and microwave systems See 39 Magnetic fields and superconductors
- m Materials optical properties
 - See 36 Optics and optical systems
- n Materials failure
 - 01 Fracture
 - 02 Fatigue
 - 03 Corrosion
 - 04 Biodegradation
- o Nondestructive testing
- p Materials in harsh environments

05 Fabrication

- a Layout and markup techniques
- b Machining traditional
 - 01 Drill press
 - 02 Band saw
 - 03 Cutoff saw
 - 04 Milling machine
 - 05 Lathe
 - 06 Grinder
 - 07 Sander
- c Machining CNC and other advanced methods
 - 01 CNC mill
 - 02 CNC lathe
 - 03 Electric discharge machining
 - 04 Plasma cutting
 - 05 3D metal printing
- d Sheet metal work
 - 01 Sheet metal layout
 - 02 Cutting
 - 03 Bending
 - 04 Pressing
 - 05 Stamping
- e Metal casting & sintering
- f Metal forming
 - 01 Forging
 - 02 Extrusion
 - 03 Drawing
 - 04 Explosive forming
- g Metal joining
 - 01 Soldering
 - 02 Vacuum brazing
 - 03 Welding
 - 04 Cold welding
- h Plastic forming
 - 01 Casting
 - 02 Molding
 - 03 Hot forming
 - 04 Injection molding
 - 05 Blow molding
- i 3D Printing
- j 3D Scanners
- k Laser cutting & etching
- I Woodworking
 - 01 Table saw
 - 02 Rotary saw
 - 03 Router
 - 04 CNC router
 - 05 Planer
 - 06 Sander
- m Wood joints

- n Glass work and glass blowing
- o Ceramic forming
 - 01 Hand throwing and forming on pottery wheels
 - 02 Raku and built-up ceramics
 - 03 Slip casting
 - 04 Press molding
- p Ceramic firing and glazing
- q Composite forming
- r Sewing and leatherwork
- s Fasteners
- t Adhesive joining
- u Surface finishing and surface treatments

06 Chemical methods

- a Labware
- b Handling chemicals
- c Solvents
- d Preparing solutions
- e Measuring physical properties of liquids and interfaces
- f Purified water and water quality measurement
- g Working with solids
 - 01 Grinding & milling
 - 02 Sieves
- h Working with gases
- i Straining and filtering
- j Centrifugation
- k Cyclone separation
- I Chromatography, liquid chromatography, gas chromatography,
- m Electrophoresis and dielectrophoresis
- n Precipitation, recrystalization
- o Concentration, desiccation and freeze drying
- p Distillation, evaporation, condensation
- q Stirring, agitating, mixing, and blending
- r Homogenization, emulsification, and colloidal dispersion
- s Volumetric analysis and titration
- t Electrochemistry
- u pH (see 08 Measurement and sensors)

07 Energy systems

- a Human and animal power
- b Mechanical energy storage
 - 01 Elastic
 - 02 Elastomer
 - 03 Rotational kinetic (flywheel)
 - 04 Pneumatic
- c Batteries
- d Fuel cells
- e Photovoltaics
- f Direct energy conversion and energy harvesting
 - 01 Thermoelectric
 - 02 Bimetallic strip
- g Small gas-powered generators
- h Regulated power supplies
- i DC-to-AC inverters
- j Inductive and wireless energy transfer
- k Wind generators
- l Hydroelectric generators
- m Wave & tidal energy conversion
- n Solar thermal energy
- o Geothermal energy
- p Microbial energy generation
- q Radioisotope thermal energy generation
- r Fuels
 - 01 Coal
 - 02 Petroleum
 - 03 Hydrogen
 - 04 Biofuel
 - 05 Biomass
- s High power electric power generation plants
- t Nuclear power plants
- u Cogeneration and thermal energy recovery
- v Electric power grid
- w Microgrids and distributed generation

08 Measurement and sensors

- a Fundamental units and standards
 - 01 Length
 - 02 Mass
 - 03 Time
 - 04 Current
- b Transfer standards and methods
- c Sensor and measurement technologies
 - 01 Mechanical
 - 02 Electrical
 - 03 Semiconductor
 - 04 Microelectromechanical (MEMS)
 - 05 Optical
 - 06 Electrooptical
- d Time and frequency
 - 01 Mechanical clocks
 - 02 Quartz crystal clocks
 - 03 Atomic clocks
 - 04 Use of stopwatches
 - 05 Photogates
 - 06 Magnetic sensor triggers
- e Dimension
 - 01 Tape measures
 - 02 Trundle wheels
 - 03 Rulers
 - 04 Transfer calipers
 - 05 Direct reading calipers
 - .01 Vernier
 - .02 Dial indicator
 - .03 Digital
 - 06 Micrometers
 - .01 Vernier
 - .02 Digital
 - 07 Double-thread micrometers
 - 08 Interferometric methods
- f Proximity, range, and level
 - 01 Optical rangers
 - 02 Ultrasound rangers
 - 03 Laser rangers
 - 04 Capacitive level sensors
 - 05 Resistive level sensors
 - 06 Ultrasound level sensors
- g Physical presence
- h Travel distance and position
- i Angles and directions
- j Linear and angular velocity
- k Linear and angular acceleration
- l Strain
 - 01 Resistive strain gauge
 - 02 Photoelastic strain measurement

- m Mass and weight
- n Force
- o Stress and pressure
- p Temperature
 - 01 Liquid-in-glass
 - 02 Thermocouple
 - 03 Thermistor
 - 04 Solid state device
 - 05 Infrared sensor

See also 20 Thermal systems: Low temperature apparatus: Low temperature thermometry

- y Volume
- r Flow
- s Sound
- t Light
 - 01 Radiometric and photometric quantities and definitions
 - 02 Photoresistor
 - 03 Photo diode
 - 04 CCD array
 - 05 Photo cell
 - 06 Photomultiplier tube
 - 07 Avalanche photodiode
- u Infrared thermal
- v Electromagnetic fields

See 39a Electric fields, discharges, and plasmas: electric field measurement See 40a Magnetic fields and superconductors: magnetic field measurement

- w Chemical sensors
- x Biosensors
- y Physiological sensors
- z Wireless sensor networks
- aa Quantum measurement

09 Spectroscopic and analytical instrumentation

See also 45 Nanoscale Microscopy and Measurement See also 47 Molecular Biology Methods

- a Prism and simple grating spectrometers
- b Compact fiber-optic input grating spectrometers
- c Photographic film-based grating spectrographs
- d Grating monochromators
- e Atomic emission spectroscopy
- f Inductively coupled plasma (ICP) atomic emission spectroscopy
- g Atomic fluorescence spectroscopy
- h Laser-induced fluorescence
- i UV-VIS absorption spectroscopy
- j Infrared absorption spectroscopy including FTIR
- k Raman spectroscopy
- l Microwave spectroscopy
- m Vacuum UV spectroscopy
- n X-ray spectroscopy
- o Mossbauer spectroscopy
- p Nuclear magnetic resonance
- q Electron spin resonance
- r Gas chromatography (including GCMS)
- s Liquid chromatography (including HPLC-MS)
- t Electrophoresis
- u Cyclic voltammetry and other electroanalytical methods
- v Differential scanning calorimetry and other thermal methods
- w Mass spectrometry and its variations
- x Ion cyclotron resonance
- y Photoemission spectroscopy
- z Auger spectroscopy
- aa Gravimetric analysis

10 Structural systems

- a Structural principles and loads on structures
- b Strength of materials and experimental stress analysis
- c Structural elements and their examples in use
 - 01 Beams
 - 02 Columns, struts and posts
 - 03 Ties and cables
 - 04 Plates, floors & tops
 - 05 Walls
- d Structural assemblies & archetypes
 - 01 Arch
 - 02 Shell
 - 03 Frame
 - 04 Truss
 - 05 Space frame
 - 06 Boom
 - 07 Tower
- e Structural materials
- f Structural joints
- g Structural footings and foundations
- h Structural kits and component systems
 - 01 Bar and clamp (as in chemistry labs)
 - 02 Grid-beam
 - 03 Unistrut
 - 04 Dexion
 - 05 80-20
 - 06 Rexroth
- i Structural monitoring and smart structures
- j Structural vibration
- k Structural stability and structural failure
- l Laboratory furniture

See 11d Laboratory, workshop and studio furnishings

m Storage and shelving

See 16 Rigging, materials handling, and storage

- n Laboratory instrument structures
 - 01 Instrument racks
 - 02 Prefabricated instrument enclosures
 - 03 Custom instrument enclosures
- o Laboratory apparatus structures
- p Machinery structures
- q Remote field instrument enclosures
- r Vacuum and pressure vessels

See 21 Vacuum and high pressure

s Vehicle structures

See 15 Vehicles

- t Display structures
- u Ladders, scaffolds, and work platforms
- v Platform and ramp construction

- w Scene design and stage construction
- x Lightweight and quickly deployed structures
- y Structures in nature
- z Various special structures
 - 01 Antenna masts
 - 02 Radio telescope dishes

11 Buildings, labs, and work areas

- a Small building design, construction and maintenance
- b Interior partitions design, construction and maintenance
- c Laboratory, workshop and studio design and layout
- d Laboratory, workshop and studio furnishings
 - 01 Lab benches
 - 02 Laboratory chairs, stools
 - 03 Easels
- e Laboratory, workshop and studio special services

See also 01 Safety and hazardous materials

- 01 Multiple power outlets
- 02 Special power (220 volt, 440 volt three-phase)
- 03 Compressed air
- 04 Natural gas
- 05 Vacuum ports
- 06 Distilled water
- 07 Special drainage
- 08 Special lighting
- 09 Data connections
- f Laboratory, workshop, and studio special environments
 - 01 Dark rooms
 - 02 Clean rooms
 - 03 Shielded rooms
 - 04 Low vibration foundation
 - 05 Equipment drop wells or hoist towers
- g Special buildings
 - 01 Astronomical observatories
 - 02 Greenhouses
- h Building structural elements and their maintenance
 - 01 Foundation
 - 02 Frames
 - 03 Joists
 - 04 Flooring
 - 05 Walls
 - 06 Sealing and insulation
 - 07 Exterior covering
 - 08 Ceilings
 - 09 Roof
 - 10 Roof drainage
 - 11 Doors
 - 12 Windows
 - 13 Stairways
- i Building physics
- j Building systems electrical layout and fixtures
- k Building systems plumbing layout and fixtures
- Building systems air conditioning
- m Building systems heating, ventilation and air conditioning (HVAC)
- n Building systems fireplaces, wood stoves and chimneys
- o Building systems lighting
- p Building systems access and security

- q Building systems fire detection and suppression
- r Universal design for access and mobility
- s Elevators, escalators and moving walkways

12 Geotechnics, hydraulics, and land use design

- a Soil modeling and modification
 - 01 Soil composition and structure
 - 02 Water transport through soils
 - .01 Darcy's Law for transport through saturated soils
- b Rock modeling and modification
- c Water channel modeling and design
- d Shore structures modeling and design
- e Paths, walkways and trails
- f Retaining walls
- g Slope stabilization
- h Trenches
- i Tunnels
- **i** Embankments
- k Drainage beds & pipes
- l Locating underground utilities
- m Detecting underground objects
 - 01 Ground penetrating radar
 - 02 Underground electric resistance tomography
- n Trees and vegetation

13 Machines and mechanisms

- a Fundamentals of mechanical force transmission
 - 01 Simple prototypes illustrate force transmission
 - 02 Machine element stress analysis and measurement
- b Friction, tribology and wear
- c Simple machines
- d Machine examples
- e Mechanical model making
- f Kinematic mounts and precision machine design
- g Flexible elements and movable joints
- h Guides and slides
- i Cable and fluid transmissions
- j Shafts, bearings and seals
- k Rotary drives and transmissions
 - 01 Friction drives
 - 02 Belts and pulleys
 - 03 Timing belts and pulleys
 - 04 Chains and sprockets
 - 05 Spur gears
 - 06 Helical gears
 - 07 Bevel gears
 - 08 Worm gears
- l Linear drives and transmissions
 - 01 Rack and pinion
- m Linkages
- n Cams and other complex motion devices
 - 01 Cams
 - 02 Geneva mechanisms
- o Ratchets and escapements
- p Clutches
- q Brakes

14 Actuators

- a General aspects of actuators
- b Voice coils
- c Solenoids
- d Electric motors
 - 01 DC motors
 - 02 DC servo motors
 - 03 Pulse controlled servos

Includes small servo units typically used in hobby radio controlled vehicles

- 04 Brushless DC motors
- 05 Stepper motors
- 06 Homopolar motors
- 07 Induction motors
- 08 Shaded pole motors
- 09 Three phase synchronous motors
- 10 -
- 11 -
- 12 Dynamometers and motor torque-speed testing
- e Linear motion electric motors
- f Pneumatic actuators

See also 21b Vacuum and high-pressure systems: compressed gas systems

g Hydraulic actuators

See also 21d Vacuum and high-pressure systems: hydraulic plumbing

- h Shape memory alloys & bimetallic strips
- i Piezoelectric and magnetostrictive actuators
- j Ultrasonic wave motors
- k Spring motors
- l Heat engines
- m Internal combustion engines
- n Turbines
- o Electric ducted fans
- p Hydrogels and polymer actuators
- q Ferrofluids and electrorheological fluids
- r Ballistic devices ancient
- s Ballistic devices firearms
- t Ballistic devices advanced
 - 01 Aircraft carrier launchers
 - 02 Railguns
- u Rockets
- v Explosives
- w Brakes

See 13q Machines and mechanisms: brakes

15 Vehicles

a Land vehicle elements

- 01 Frame structure
- 02 Body structure (if applicable)
- 03 Managing air resistance
- 04 Energy supply
- 05 Power plant
- 06 Torque conversion
- 07 Transmission
- 08 Axles and bearings
- 09 Suspension
- 10 Wheels
- 11 Ground traction
- 12 Steering
- 13 Vehicle dynamics
- 14 Sensing and control
- 15 Stabilization
- 16 Vibration and noise control
- 17 Impact mitigation

b Water vehicle elements

- 01 Hull structure
- 02 Buoyancy
- 03 Deck and super structure (if applicable)
- 04 Managing drag, wake and turbulence
- 05 Energy supply
- 06 Power plant
- 07 Propeller or other thrust generator
- 08 Sails (if applicable)
- 09 Steering
- 10 Sensing and control
- 11 Vehicle dynamics
- 12 Stabilization
- 13 Wave response and sea keeping control
- 14 Vibration and noise control
- 15 Impact mitigation

c Air vehicle elements

- 01 Fuselage structure
- 02 Wing structure
- 03 Lift
- 04 Managing drag, wake and turbulence
- 05 Energy supply
- 06 Power plant
- 07 Thrust generator
- 08 Takeoff assist (if applicable)
- 09 Takeoff and landing gear
- 10 Steering
- 11 Sensing and control
- 12 Attitude control
- 13 Vehicle dynamics
- 14 Stabilization
- 15 Vibration and noise control
- 16 Impact mitigation

d Rocket and space vehicle elements

- 01 Launch vehicle structure
- 02 Cabin or instrument enclosure structure
- 03 Energy supply
- 04 Thrust
- 05 Trajectory
- 06 Attitude control
- 07 Orbit dynamics
- 08 Managing drag
- 09 Sensing and control
- 10 Stabilization
- 11 Vibration and noise control
- 12 Impact mitigation
- 13 Vehicle return

e Specific application areas of vehicle design and operation

- 01 Skates, scooters and self-balancing personal transporters
- 02 Bicycles and electric bicycles
- 03 Mopeds and motorcycles
- 04 Non-motorized carts and land conveyances
- 05 Small motorized carts, utility vehicles, and all-terrain vehicles
- 06 Farm vehicles and small mobile machinery
- 07 Automobiles
- 08 Buses and trucks
- 09 Heavy machinery vehicles
- 10 Roller coasters and other amusement park vehicles
- 11 Light rail, cable cars, and cog railways
- 12 Trains, monorails, and other rail systems
- 13 Hyperloop and Maglev
- 14 Rowboats, rafts, canoes, kayaks, and rowing shells
- 15 Sailboats
- 16 Small power boats, hydrofoils and hovercraft
- 17 Ships
- 18 Small underwater vehicles
- 19 Submarines
- 20 Gliders and parasails
- 21 Jetpacks and flying cars
- 22 Small powered aircraft
- 23 Medium and large propeller aircraft
- 24 Helicopters and tilt-rotor aircraft
- 25 Jet aircraft
- 26 Supersonic and hypersonic aircraft
- 27 Model rockets
- 28 Small rockets and sounding rockets
- 29 Rocket engines
- 30 Ballistic launch vehicles
- 31 Orbit launch vehicles
- 32 Orbital dynamics and attitude control
- 33 Cube sat and other small satellite packages
- 34 Satellite systems
- 35 Long mission space propulsion
- 36 Long mission space probe systems
- 37 Planetary landers with propulsion

16 Rigging and materials handling

- a Moving equipment
 - 01 Carts
 - 02 Hand trucks
 - 03 Furniture dollies
 - 04 Skates
 - 05 Hydraulic platforms
 - 06 Pallet jacks
 - 07 Jbars and crowbars
 - 08 Come-alongs
- b Rope, wire rope, strapping and fittings
- c Hoisting and pulling equipment and methods
 - 01 Winches and come-alongs
 - 02 Block and tackle
 - 03 A-frame hoists
 - 04 Engine hoists
 - 05 Cranes
- d Lifting methods
 - 01 Hydraulic jacks
 - 02 Farm jacks
 - 03 Specialized hydraulic lifts (motorcycle, ATV, etc.)
- e Heavy equipment movement
- f Loading docks and freight elevators
- g Trucks and trailers
- h Fork-lift vehicles
- i Securing equipment with tie-downs and other fixtures
- j Climbing and search-and-rescue technique
- k Stage and performance rigging
- I Materials handling equipment and methods
 - 01 Roller tables
 - 02 Conveyer belts
 - 03 Overhead hooks

See also 30 Robotics, mechatronics and automation: pick and place technology

- m Shelving and storage cabinets
- n Shipping of objects and materials
 - 01 Packaging for shipping
 - 02 Containers for heavier or fragile equipment
 - 03 Shipping choices and procedures
 - 04 Cold shipping
 - 05 Low vibration transport (air shock, etc.)
- o Logistics and supply management

17 Rotating, vibrating, and chaotic systems

- a Small turntables
- b Heavy load turntables
- c Centrifuges
- d Design and testing for high speed rotation
 - 01 Centrifugal loads
 - 02 Rotational balance testing and adjustment
- e Shakers
- f Contact vibrators
- g Precision vibration platforms
- h Vibration tables
- i Chaotic motion generators
- j Machinery vibration
- k Vibration monitoring and spectrum analysis
- Stewart Platforms and other multi-degree-of-freedom platforms

18 Sound and ultrasound

- a Natural sources of sound
- b Loudspeakers and sound production systems
- c Sound propagation and attenuation
- d Sound scattering
- e Architectural and environmental acoustics
- f Microphones and sound measurement
- g Sound recording
- h Recording studios and anechoic chambers
- i Digital audio
- j Audio amplifiers
- k Audio signal processing and electronics
 - 01 VU meters
 - 02 Filtering
 - 03 Phase shifting
 - 04 Graphic equalizers
 - 05 Mixing
- l Noise suppression
- m Active sound control and cancelling
- n Musical instruments
- o Sound synthesizers and MIDI
- p Sound effects generation
- q Physiology of sound sensation
- r Music theory and sound perception
- s Acoustic devices and imaging
- t Sound forces on materials
- u Nonlinear acoustics
- v Underwater sound and sonar
- w Ultrasound production
- x Ultrasound propagation and attenuation
- y Ultrasound scattering
- z Ultrasound detection
- aa Ultrasonic devices and imaging
- bb Cavitation, sonoluminescence and sonochemistry
- cc Infrasound sources, propagation and detection

19 Fluid systems

- a Fluid properties and their measurement
 - 01 Density
 - 02 Compressibility
 - 03 Thermal expansion coefficient
 - 04 Viscosity
 - 05 Rheological parameters
 - 06 Surface tension air and liquid
 - 07 Surface tension liquid and liquid
 - 08 Surface adhesion liquid and solid
- b Flow measurement mass and volume flow
 - 01 Gas flow detection switches
 - 02 Venturi tube measurement
 - 03 Hot wire mass flow measurement
 - 04 Rotating cup air flowmeter
 - 05 Vane air flowmeter
 - 06 Ball in tube gas flow meter
 - 07 Liquid flow detection switches
 - 08 Ball in tube liquid flow meter
 - 09 Ultrasonic liquid flow meter
 - 10 Coriolis liquid flow meter
- c Flow measurement single point velocity
 - 01 Pitot tube
 - 02 Hot wire and hot film probe
 - 03 Thermistor probe
 - 04 Laser Doppler velocimetry (LDV)
- d Flow measurement velocity profiles and fields
 - 01 Mechanically scanned hot wire
 - 02 Optomechanically scanned LDV
 - 03 Ultrasound profilimetry
 - 04 Particle image velocimetry
- e Flow visualization
 - 01 Tracer particles
 - 02 Tracer bubbles
 - 03 Dye
 - 04 Smoke
 - 05 Vapor
 - 06 Shadowgraphy
 - 07 Schlieren
- f Flow experimental systems
 - 01 Wind tunnels
 - 02 Supersonic wind tunnels
 - 03 Water tunnels
 - 04 Water channels
 - 05 Soap film tunnels
 - 06 Wave tanks
 - 07 Ripple tanks
 - 08 Quantum analogs with bouncing droplets
- g Pumps
- h Tubes, pipes and hose
- i Pipe fittings

- j Pipe working tools and methods
- k Liquid inlets and outlets
- l Liquid flow valves
- m Other liquid flow control devices
- n Liquid pressure control and safety relief
- o Liquid flow turbulence suppression or generation
- p Flow of highly viscous and non-Newtonian fluids
- q Fans and blowers
- r Ducting and hoses
- s Duct working tools and methods
- t Air inlets and outlets
- u Air flow valves
- v Other air flow control devices
- w Gas pressure control and safety pressure relief
- x Flow noise suppression
- y Air flow turbulence suppression or generation
- z Open flow channels
- aa Sluice gates and channel flow control
- bb Multiphase flow
- cc Granular flow

20 Thermal systems

- a Heat transfer
- b Materials for high temperature apparatus
- c Temperature control for high temperatures
- d Water baths and circulators for temperature control
- e Combustion processes
- f Combustion heating
- g Fluid exchange heating systems
- h Steam heating systems
- i Heat pumps
- j Resistance heating
- k Induction heating
- I Semiconductor device heating
- m Thermoelectric systems heating and cooling
- n Laser heating
- o Radiant heating
- p Microwave heating
- q Radio frequency heating
- r Other heating technologies
- s Ovens and kilns
- t Crucibles and quartz containers
- u Materials for medium low temperature apparatus
- v Temperature control for medium low temperature apparatus
- w Vapor cycle refrigerators
- x Other cooling technologies
 - 01 Evaporative cooling
 - 02 Zeolites for cooling
 - 03 Vortex cooling
 - 04 Thermoacoustic refrigeration
- y Materials for very low temperature apparatus
- z Temperature control for very low temperatures
- aa Low temperature baths and coolants
 - 01 Water ice in fluid mixtures and solutions
 - 02 Dry ice
- bb Liquid nitrogen
 - 01 Nitrogen liquefiers
 - 02 Liquid nitrogen containers and storage
 - 03 Liquid nitrogen transfer
- cc Liquid helium
 - 01 Helium liquefiers
 - 02 Liquid helium containers and storage
 - 03 Liquid helium transfer
- dd Evaporative cooling for very low temperature systems
- ee Low temperature apparatus
 - 01 Materials for low temperature apparatus
 - 02 Dewars and other low temperature enclosures
 - 03 Plumbing for low temperature apparatus

- 04 Seals for low temperature apparatus
- 05 Valves for low temperature apparatus
- 06 Superfluid systems
- 07 Low temperature thermometry
 - .01 Helium vapor pressure thermometry
 - .02 Diode thermometers
 - .03 Carbon resistors
 - .04 Germanium thermometers
- 08 High precision temperature control
- ff Helium-3 refrigerators
- gg Dilution refrigerators
- hh Magnetic cooling

21 Vacuum and high pressure

- a Low-level vacuum generation
 - 01 Siphons
 - 02 Aspirators
 - 03 Consumer and shop vacuum cleaners
- b Medium level vacuum pumps
 - 01 Mechanical roughing pumps
 - 02 Roots pumps
- c Entrapment pumps
 - 01 Cryogen traps
 - 02 Getters
 - 03 Ion pumps
 - 04 Zeolites
- d High vacuum pumps
 - 01 Diffusion pumps
 - 02 Turbo pumps
- e Molecular flow modeling
- f Vacuum plumbing
 - 01 Ducts, pipes and tubing
 - 02 Seals
- g Vacuum valves

See also 19t Fluid systems: air flow valves

- 01 Gate valves
- 02 Butterfly valves
- h Low and medium level vacuum measurement
 - 01 Diaphragm gauges
 - 02 Bourdon-tube gauges
 - 03 Thermocouple gauges
 - 04 Pirani gauges
- i High vacuum measurement
 - 01 Ionization gauges
- j Vacuum system controls
 - 01 Automatic pump line switching
- k Vacuum containment vessels
- l Vacuum failure mechanics
- m Vacuum system outgassing
- n Vacuum ports and feedthroughs
 - 01 Electrical feedthroughs
 - 02 Rotating drive mechanical feedthrough
 - 03 Linear drive mechanical feedthrough
 - 04 Optical port
- o Vacuum leak detectors
- p Pressure vessels

See also 52 Extreme environments and space (vessel and capsule design)

- q Pressure failure mechanics
- r Pressure vessel ports and feedthroughs
 - 01 Electrical feedthroughs
 - 02 Rotating drive mechanical feedthrough
 - 03 Linear drive mechanical feedthrough

- 04 Optical port
- s Compressors
- t Compressed gas systems
 - 01 Compressed gas storage cylinders
 - 02 Compressed gas regulators
 - 03 Compressed gas plumbing and seals
 - 04 Compressed gas valves
 - 05 Compressed gas flow control
 - 06 Compressed gas pressure control and safety relief
- u Hydraulic pumps
- v Hydraulic plumbing
 - 01 Hydraulic hoses
 - 02 Hydraulic seals
 - 03 Hydraulic valves
 - 04 Hydraulic flow control
 - 05 Hydraulic accumulators
 - 06 Hydraulic pressure control and safety relief
- w Presses and rams
 - 01 Mechanical hand press
 - 02 Hydraulic press
 - 03 Hydraulic ram
 - 04 Hydraulic punches
- x Fluid compression devices
- y Hyperbaric chambers
- z Punch and stylus pressure concentrators
- aa Diamond anvil cells
- bb Impact shocks
- cc Shock tubes
- dd Explosive shocks

22 Electronic test and measurement

See also 07h Energy and power systems: regulated power supplies
See also 24 Radio-frequency and microwave systems: RF test and measurement instrumentation, e.g.
for VSWR meters and vector network analyzers

- a Troubleshooting
 - 01 First level troubleshooting checks
 - .01 Exterior mechanical or water damage
 - .02 Burnt or overheated components (including smell)
 - .03 Power connected
 - .04 Fuse or circuit breaker
 - .05 Signals connected
 - .06 Broken interconnect wires
 - .07 Performing self-tests if available
 - 02 Obtaining and using instrument manuals
- b Electrical measurement primary standards
- c Electrical measurement secondary standards
- d Decade passive component boxes & ratio transformers
- e Impedance bridges
- f Galvanometers
- g Simple testers
 - 01 Continuity tester
 - 02 AC voltage outlet tester
- h General purpose digital multimeters
- i Power meters
- j High precision and extended bandwidth digital multimeters
- k High sensitivity electrometers
- Reactive component meters
 - 01 Capacitance meters
 - 02 Inductance meters
 - 03 LCR meters
- m Meter probing and connection methods
 - 01 General probe design
 - 02 Inductive probes
 - 03 High voltage probes
 - 04 3-wire measurement
 - 05 4-wire measurement
 - 06 Guarding
 - 07 Connection switcher instruments
- n Noise in electronic systems
 - 01 Johnson noise
 - 02 Shot noise
 - 03 1/f noise
 - 04 Noise figure
- o Signal and function generators
 - 01 Sine wave generators
 - 02 Pulse generators
 - 03 General purpose function generators
 - 04 Sweep generators
 - 05 Arbitrary waveform generators
 - 06 Pattern generators

- 07 Frequency synthesizers
- 08 Noise generators
- p Timer-counters
- q Pulse height discriminators
- r Oscilloscope types analog
 - 01 Medium bandwidth
 - 02 High bandwidth
 - 03 Storage scopes
 - 04 Plug-in modules
- s Oscilloscope types digital sampling
- t Oscilloscope use
 - 01 Signal selection and coupling
 - 02 Voltage scales
 - 03 Time scales
 - 04 Triggering
 - 05 Periodic signal amplitude, period, and phase
 - 06 Relative phase of two signals
 - 07 Differential amplitudes
 - 08 Transient response
 - 09 Noise level
- u Active device testers
 - 01 Source meters
 - 02 Transistor curve tracer
 - 03 Transistor tester
 - 04 Tube tester
- v Logic analyzers
- w Transient recorders
- x Signal averagers
- y Data loggers

See computer-aided data acquisition and control

- z Legacy recording instruments
 - 01 Strip chart recorders
 - 02 Rotary chart recorders
 - 03 XY plotters
- aa Amplifiers
- bb Filters
- cc Lockin amplifiers and phase-sensitive detection
- dd Spectrum analyzers

23 Analog electronics and electronics construction

- a Electrical properties of materials
- b Characterization of electronic materials
 - 01 Resistivity/conductivity van der Pauw technique
 - 02 Hall effect van der Pauw technique
- c Electrical contacts between materials
 - 01 Ohmic contact
- d Wire and cable
 - 01 Wire sizes and current limits
 - 02 Bare wire
 - 03 Insulation types
 - 04 Insulation stripping
 - 05 Heat shrinkable insulation
 - 06 Solderless breadboard wire
 - 07 Hookup wire
 - 08 Magnet wire
 - 09 Power wire
 - 10 General purpose multi-wire cables
 - 11 Ribbon cables
 - 12 RJ-xx (phone) cable
 - 13 RJ-yy (ethernet) cable
 - 14 Coax cable
 - 15 Twin-ax cable
 - 16 Tri-ax cable
- e Electrical connectors
- f Fuses and circuit breakers
- g Switches and relays
- h Passive components selection and characterization
 - 01 Resistors
 - 02 Capacitors
 - 03 Inductors
 - 04 Transformers
 - 05 Diodes
 - 06 Zener diodes
- i Passive circuits analysis and design
 - 01 Circuit analysis using Kirchoff's Laws
 - 02 Voltage dividers
 - .01 Resistive dividers
 - .02 Ratio transformers
 - 03 RC circuit charging and discharging
 - 04 Passive filters
 - 05 Rectifiers
 - 06 Voltage doublers
- j Semiconducting active devices
- k Low power transistor circuits
- l High power transistor circuits
- m Power control circuits (SCRs, thyristors, etc.)
- n Operational amplifier (op amp) types and characterization
- o Op amp circuits
 - 01 Op amp basic models

- 02 Op amp nonideal characteristics
- 03 Op amp internal design
- 04 Frequency compensation
- 05 Comparators
- 06 Basic amplifiers
 - .01 Voltage follower signal buffer
 - .02 Inverting
 - .03 Noninverting
- 07 Low noise amplifiers
- 08 High input impedance amplifiers
- 09 Logarithmic amplifiers
- 10 Summers
- 11 Differentiators
- 12 Integrators
- 13 Current to voltage converters
- 14 Low pass filters
- 15 High pass filters
- 16 Band pass filters
- 17 Notch filters
- p Instrumentation amplifiers
- q Charge sensitive preamplifiers
- r Programmable signal conditioning systems

See 29 Computer-aided experiments: k System-on-Chip and Programmable Systems on Chip

- s Oscillators
 - 01 Neon relaxation oscillator
 - 02 Thermal switch oscillator (auto blinkers)
 - 03 555 timer oscillator
 - 04 Wien Bridge oscillator
 - 05 Colpitts oscillator
 - 06 Hartree oscillator
 - 07 Crystal oscillator
 - 08 Voltage controlled oscillators
- t Phase-locked loops
- u Vacuum tube active devices
- v Vacuum tube circuits
- w Optoelectronics
- x Electronics symbols and schematics
 - 01 Symbols and symbol libraries
 - 02 Hand sketching electronic schematics
 - 03 Schematic drawing software
- y Wire and connection joining
 - 01 Wire stripping
 - 02 Inline crimped joints
 - 03 Twisted nuts
 - 04 Terminal lugs with crimping tools
 - 05 Wire wrap
 - 06 Soldering technique
 - 07 ROHS compliant soldering
 - 08 Soldering tools
 - 09 Solder removal
 - 10 De-soldering

- z Electronics prototyping and construction
 - 01 Tools for electronics work
 - 02 Solderless breadboards
 - 03 Simple breadboards
 - 04 Pre-patterned printed circuit boards
 - 05 Custom printed circuit board design
 - 06 Printed circuit board fabrication
 - .01 Third-party fabrication
 - .02 Etching
 - .03 Micromilling
 - 07 Component sockets and mounts
 - 08 Working with surface mount components
 - 09 Board and enclosure mounts and feet
 - 10 Cable guides
 - 11 Wire grommets and feed-throughs
 - 12 Pre-fabricated enclosures and their modification
 - 13 Custom-fabricated enclosures
 - 14 Panels
 - 15 Labeling
- aa Electronic thermal management
 - 01 Component heat sinks
 - 02 Fans and blowers
 - 03 Liquid cooling
- bb Electronic interference, grounding and shielding techniques

24 Radio-frequency and microwave systems

- a RF and microwave spectrum allocations
- b RF passive components
- c RF transistors
- d RF generators
 - 01 Spark gaps
 - 02 RF oscillators
- e RF test and measurement instrumentation
 - 01 VSWR meters
 - 02 Time-domain reflectometers
 - 03 Vector network analyzers
 - 04 RF spectrum analyzers
- f Radio receivers
- g RF mixing and modulation
- h RF filters
- i RF power amplifiers
- j RF impedance matching networks
- k Radio transmitters
- l Radio antennas
- m Wireless transceiver modules
 - 01 Bluetooth
 - 02 Zigbee and Xbee
 - 03 LoRa long range
 - 04 NFC near field communication
 - 05 WiFi (IEEE 802.11)
- n RFID
- o Cellular radio
- p Software defined radio
- q Spread spectrum techniques
- r Radio control
- s Telemetry systems
- t Microwave generators
 - 01 Klystrons
 - 02 Magnetrons
 - 03 Gunn diodes
- u Microwave detectors
 - 01 Diode detectors
 - 02 Bolometers
- v Microwave electric field measurement
 - 01 Cavity resonance shift method
 - 02 Electro-optic crystals
- w Microwave transmission lines
 - 01 Strip line
 - 02 Coax
- x Microwave waveguides
- y Microwave cavities and resonators
- z Microwave antennas
- aa Microwave system design

- 01 Impedance matching
- 02 Smith charts
- bb Microwave system components
 - 01 Attenuators
 - 02 Terminators
 - 03 Directional couplers
 - 04 Circulators

25 Digital logic, FPGAs, microprocessors, and microcontrollers

- a Logic implementations
 - 01 TTL
 - 02 TTL low-power Shottky
 - 03 CMOS
- b Combinational logic
 - 01 Buffers
 - 02 AND
 - 03 OR
 - 04 NAND
 - 05 NOR
- c Sequential logic
 - 01 JK flip flops
- d Counting logic
- e Registers and shift registers
- f Address encoders/decoders
- g Interface integrated circuits
- h Line drivers
- i Field programmable gate arrays (FPGAs)
- j Device description languages
 - 01 Verilog
- k Microprocessor types and architectures
- l Microprocessor programming
- m Microcontroller types and architectures
- n Microcontroller programming

See also 29 Computer-aided data acquisition and control

26 Computer integrated data acquisition and control

See also 38 Imaging and image processing

- General concepts in signal conditioning for data acquisition and control
 - 01 Buffering
 - 02 Gain-and-offset
 - 03 Filtering
 - 04 Shielding
 - 05 Propagation-delay
- b Standard physical interfaces identification and specification
 - 01 Digital I/O
 - 02 Timer-counters
 - 03 Data transmission buses
 - 04 A/D converters
 - 05 D/A converters
 - 06 Audio inputs and outputs
 - 07 Camera inputs
 - 08 Display outputs
- c Signal and data conversion
 - 01 Analog-to-Digital Conversion
 - 02 Digital-to-Analog Conversion
 - 03 Analog multiplexing
 - 04 Pulse-width modulation
 - 05 Shift registers for serial-to-parallel conversion
 - 06 Binary encoding and decoding
 - 07 ASCII encoding and decoding
- d Data acquisition modules (DAQs) connecting through USB port
 - 01 Arduino
 - 02 Other Microcontroller Boards
 - 03 LabJack
 - 04 Omega Engineering modules
 - 05 National Instruments
 - 06 Other
- e Data acquisition cards
- f Commercial sensor-and-interface systems
 - 01 PASCO
 - 02 Vernier
 - 03 National Instruments
 - 04 Other
- g Instrument busses
 - 01 IEEE-488 general purpose interface bus GPIB
 - 02 VXI
- h Data communication standards
 - 01 UART / RS232
 - 02 RS485
 - 03 I2C
 - 04 SPI
 - 05 I2S
 - 06 CAN
 - 07 4-20 mA current loop
- i Data communication and control protocols
 - 01 MIDI

- 02 Firmata
- 03 Modbus
- j Fiber optic links
- k Wireless links and networks
 - 01 Bluetooth
 - 02 Zigbee-Xbee
 - 03 LoRa
- I Single-board microcontroller systems
 - 01 Arduino
 - 02 Adafruit Feather
 - 03 Sparkfun Photon
- m System-on-chip (SoC) and programmable systems-on-chip (PSoC)
- n Single-board computer systems with external input-output
 - 01 Raspberry Pi
 - 02 Beaglebone
 - 03 RedPitaya
- o Software for data acquisition and control
 - 01 LabVIEW
 - 02 Pythics
- p Embedded system design issues
 - 01 Real-time response
 - 02 Interrupts and interrupt priority
 - 03 Multi-channel synchronization
 - 04 Real-time LINUX

27 Human interfaces

- a Small visual displays
 - 01 Indicator lights
 - .01 Incandescent
 - .02 Glow discharge
 - .03 LED
 - 02 Dial gauges and panel meters
 - 03 Electromechanical numeric displays
 - 04 LED displays
 - .01 7 segment
 - .02 Character-graphic matrices and alphanumeric lines
 - .03 Larger LED matrices
 - 05 LCD displays
 - .01 7 segment
 - .02 Character-graphic matrices and alphanumeric lines
 - .03 TFT screens
- b Large displays and monitors
 - 01 Cathode ray tube displays
 - 02 LCD monitors
 - 03 LED monitors
 - 04 OLED displays
 - 05 TFT displays
 - 06 Plasma monitors
- c Projectors
 - 01 LCD projector
 - 02 Micromirror projector
- d Visual and audio output controllers
 - 01 Video cards
 - 02 Sound cards
- e Wearable and heads-up displays
 - 01 Display glasses (e.g. Google glasses)
 - 02 Windshield displays
 - 03 Virtual reality display googles
- f Printers
 - 01 Laser printers
 - 02 Ink jet
 - 03 Dot matrix

See also 05i Fabrication: 3D printers

- g Plotters
- h Audible alarms and indicators
- i Voice synthesis
- j Voice recognition
- k Push buttons
- I Touch and pressure sensing controls
- m Refreshable braille displays
- n Keypads
- o Keyboards
- p Screen cursor controls
 - 01 Mice
 - 02 Trackballs

- 03 Touchpads
- 04 Pen tablets
- q Touch screens
- r Stylus screens
- s Light pens
- t Slides, dials and jog controls
- u Joysticks
- v Shift levers and hand cranks
- w Steering wheels
- x Foot switches
- y Foot pedals
- z Balance sensing controllers
- aa Mouth operated controllers
 - 01 Sip and puff
- bb Hand operated game controllers
 - 01 Gamepad
 - 02 Paddle
 - 03 Wii remote
- cc Visual scanning game controllers
 - 01 Kinect
 - 02 Gesture recognition
- dd Eye trackers
- ee Glove controllers
- ff Head orientation controllers
- gg Heat sensing controllers
- hh Biometric sensors
 - 01 Fingerprint sensors
 - 02 Retina scanners
 - 03 Facial recognition
- ii Haptic devices
 - 01 Vibration sensing
 - 02 Pressure sensing
- jj Neural activity sensing

28 Control systems

See also 08 Measurement and sensors

See also 14 Actuators

See also 29 Computer-aided data acquisition and control

See also 30 Robotics, mechatronics, and automation

- a System diagrams and feedback
- b Linear dynamical system modeling and control definition Laplace transform methods
- c Linear dynamical system modeling and control definition state variable methods
- d System identification and parameter measurement
- e Stochastic modeling for control
- f Adaptive control
- g Robust control
- h Nonlinear control
- i Stabilizing intrinsically unstable states
- j Chaos control
- k Specific applications of control
 - 01 Temperature
 - 02 Pressure
 - 03 Flow
 - 04 Motor speed
 - 05 Linear position
 - 06 Angular position
 - 07 Travel direction
 - 08 Satellite and space probe attitude

29 Mechatronics, robotics and automation

- a Small mobile robots
- b Benchtop robots
- c Factory robots
- d Walking robots
- e Exoskeletons and wearable robotics
- f Remote manipulators
- g Programmable logic controllers
- h Pick-and-place automation
- i Conveyor-belt object placement, diversion, and removal
- j Automated machining processes
- k Machine vision

See 38 Imaging and remote sensing

30 Computers, clusters, and servers

- a Performance metrics
- b Power and thermal management
- c Parallel and multi-core processors
- d Desktop computer architecture
- e Laptop computer architecture
- f Hardened computers for field use
- g Tablets
- h Computer clusters
- i Server hardware and maintenance
- j Quantum computing
- k Optical computing
- l Biocomputing

31 Memory, data storage, and input-output

- a Read-only memory
 - 01 EPROM
 - 02 EEPROM

Others to be added

- b Random access memory
 - 01 Dynamic RAM
 - 02 Static RAM
- c Flash memory
- d Solid state memory access controllers
- e Optical data storage
 - 01 CD ROM
 - 02 DVD
 - 03 Blue-Ray
- f Magnetic disk data storage hard disk
- g Magnetic disk data storage floppy disk
- h Magnetic tape data storage
- i Magnetic core data storage
- j Magnetic strip data storage
- k Remotely accessed data chips
 - 01 Bank cards
 - 02 Animal identifiers
- l Optical readers
 - 01 Bar-code reader
 - 02 QR code reader

See also 38 Imaging and image processing

m Input-output ports

See also 29 Computer-aided data acquisition and control: A/D and D/A conversion

- 01 RS 232 serial port
- 02 USB port
- 03 Firewire (IEEE 1394)
- 04 Thunderbolt
- 05 Ethernet
- 06 Parallel port
- 07 VGA
- 08 DVI
- 09 Display port
- 10 HDMI

n Legacy data input devices

- 01 Punch card readers
- 02 Paper tape readers
- 03 Switch panels

32 High data throughput, neural networks, and artificial intelligence

- a Pattern recognition concepts
- b Graphic processor units (GPUs)
- c FPGA high-throughput implementations
- d CCD arrays used for high throughput
- e Other high-throughput architectures
 - 01 Gene arrays
- f Neural network design
- g Neural network physical implementations
- h Deep learning applications

33 Signal processing

- a Noise models
- b Methods to enhance signal detection sensitivity
 - 01 Phase-sensitive detection
 - 02 Resonance
 - 03 Marginal oscillator
 - 04 Transition edge detection
- c Signal sampling concepts
 - 01 Sample intervals Nyquist criterion
 - 02 Pre-filtering
 - 03 Sampling precision
 - 04 Analog gain and offset to optimize dynamic range
- d Information theory concepts
 - 01 Shannon information
 - 02 Mutual iinformation
- e Digital signal processor hardware
- f Signal averaging
 - 01 Box car averaging
- g Fast-Fourier transforms and spectrum analyzers
- h Cross-spectra
- i Bi-spectra
- j Correlation functions and correlator hardware
- k Digital filters
- l Kalman filters
- m Linear prediction
- n Nonlinear prediction

34 Networks and communication systems

- a Network topologies
- b Network layer concepts
- c Encoding and decoding
- d Encryption
- e Data transmission systems
 - 01 Ethernet
 - 02 SMS
- f Routers
- g Switches
- h Peer-to-peer network implementations
- i Local-area network implementations
- j Laboratory instrument network implementations
- k Factory floor network implementations
- l Voice communication systems
 - 01 Land line
 - 02 Voice-over-internet
 - 03 Cellular
- m Long-haul cable communication
- n Fiber-optic communication
- o Microwave communication
- p Underwater communication
- q Underground communication
- r Deep-space communication

35 Geospatial systems and internet-of-things

- a Internet-of-things identification and communication standards
- b Edge gateways
- c GeoWeb and DigitalEarth
- d Small object embedded connections
- e Human wearable and implanted connections
- f Animal wearable and implanted connections
- g Complex machinery maintenance connections
- h Complex machinery real-time simulators digital twins
- i Farm
- j Application examples
 - 01 Weather monitoring systems
 - 02 Environmental quality monitoring systems
 - 03 Globally distributed radiation detectors
 - 04 Earthquake monitoring systems
 - 05 Other natural hazard warning systems
 - .01 Tsunamis
 - .02 Volcanos
 - 06 Danger alerts e.g. gunshot location
 - 07 Traffic monitoring
 - 08 Parking search
 - 09 Shipping and delivery fleet monitoring
 - 10 Warehouse and retail inventory management
 - 11 Automobile tracking and emergency response systems
 - 12 Personal mobility device tracking
 - 13 Hospital systems monitoring
 - 14 Patient monitoring
 - 15 Patient medical device monitoring
 - 16 People tracking
 - 17 Pet tracking
 - 18 Wildlife tracking
 - 19 Smart homes
 - 20 Smart farms
 - 21 Equipment maintenance monitoring
 - 22 Smart grids
 - 23 Smart infrastructure e.g. bridges

36 Optics and optical systems

- a Light sources
- b Optical properties of materials
- c Optical elements selection and specification
- d Infrared, UV and X-ray optics
- e Polarizers and polarization phenomena
- f Diffraction-based components
- g Fourier optics
- h Optics fabrication
- i Optics testing
- j Optics cleaning and maintenance
- k Optical aberrations and their control
- l Optical design software
- m Design of compound optical systems
- n Optical mounts and opto-mechanical design
- o Optics tables and support structures
- p Fiber optics
- q Interferometry
- r Optical instruments
 - 01 Autocollimators
- s Adaptive optics
- t Non-imaging optics

See 44 Thin films, microfabrication and microdevices

37 Lasers and photonics

- a Optical cavities
- b Gas lasers
- c Diode lasers semiconductor lasers
- d Tunable diode lasers
- e Solid state lasers
- f Fiber lasers
- g Photonic crystal lasers
- h Dye lasers
- i Excimer lasers
- j Free-electron lasers
- k Laser pulsing methods
- l Pico-second lasers
- m Femto-second lasers
- n Laser alignment
- o Working with invisible radiation
- p Acousto-optic devices
- q Electro-optic materials
- r Kerr cells
- s Pockels cells
- t Nonlinear optics
- u Masers

38 Imaging and remote sensing

- a Electronic sensor arrays
 - 01 CCD
 - 02 CMOS
 - 03 Photodiode
- b Sensor cooling
- c Photographic film
- d Densitometry
- e Photographic lighting
- f Pinhole cameras
- g Projective geometry
- h Human eye optics
- i Simple lens cameras
- i Multi-element lenses
- k Telephoto lenses
- l Telescopes
- m Zoom lenses
- n Macro lenses
- o Manual and automatic focusing technologies
- p Manual and automatic exposure control technologies
- q Computer and mobile device built-in cameras
- r Web cameras
- s Point-and-shoot digital cameras
- t Large format view cameras
- u Single-lens reflex cameras
- v Mirrorless cameras
- w Camera mounts
- x Camera and lens cases
- y Image compression and image file formats
- z Digital image processing
- aa Analog video signals and standards
- bb Digital video formats
- cc Moving film cameras
- dd Image triggering and synchronization
- ee Time-lapse imaging
- ff High speed photography
- gg High speed video
- hh Low light and high dynamic range imaging
- ii Non-visible imaging
- jj Special effects imaging
- kk Holography
- II Drone-based imaging
- mm Underwater imaging
- nn Equipment photography and photo-documentation
- oo Nature photography

- pp Binoculars and spotting telescopes
- qq Sighting, alignment, and utility telescopes
- rr Refracting telescopes
- ss Reflecting telescopes 250 mm diameter
- tt Large reflecting telescopes
- uu Telescope mounts and drives
- vv Photogrammetry
- ww Multi-spectral imaging for remote sensing

39 Electric fields and plasmas

- a Electric field measurement
- b Material behavior in strong electric fields
- c Electrostatic generators
 - 01 Triboelectric generation
 - 02 Piezoelectric generation
 - 03 Wimshurst machines
 - 04 Van de Graaf generators
- d Tesla coils
- e High voltage transformers
- f High voltage power supplies
- g High voltage insulators and mounts
- h High voltage cables
- i High voltage switching
- j High voltage regulation
- k DC gas discharge tubes
- I DC arcs
- m Lightning observation and measurement
- n Lightning protection
- o Low frequency AC gas discharge tubes
 - 01 Neon indicator lamps
 - 02 Fluorescent lamp fixtures
 - 03 Neon lighting
- p Capacitively coupled RF plasma generation
- q Inductively coupled RF plasma generation
- r Microwave plasmas
- s Flow plasma interaction
- t Plasma heating
 - 01 Electron cyclotron resonance heating
- u Toroidal plasma containment
- v Other types of plasma containment

40 Magnetic fields and superconductors

- a Magnetic field measurement
- b Magnetic properties of materials
- c Magnetic susceptometry
- d Dynamic effects and dissipation in magnetic materials
- e Magnet balances
- f Helmholtz coils
- g Air solenoids
- h Permanent magnets
- i Conventional solenoid electromagnets
- j Conventional poled electromagnets
- k Conventional electromagnet power supplies
- I Magnet shimming
- m Magnetic field gradient generation
- n Magnet cooling
- o High T-c superconductor magnets
- p Low temperature superconductor magnets
- q Superconducting magnet power supplies
- r High-Tc superconductor fabrication and testing
- s High-Tc superconductor applications
- t Low temperature superconductor applications
- u Josephson junctions
- v SQUIDs
- w SQUID magnetometry
- x Other superconducting devices
- y Magnetic levitation

41 Charged-particle optics and instruments

- a Charged particle sources
- b Charged particle traps
 - 01 Paul trap
 - 02 Penning trap
 - 03 Magneto-optical trap
- c Acceleration electrodes
- d Lenses
- e Deflectors
- f Phosphors
- g Faraday cups
- h Beam dumps

42 Nuclear and elementary particle methods

- a General aspects of nuclear and elementary particle systems
- b Radioactive sources
- c Accelerators
- d Storage rings
- e Relativistic particle beams
- f Detectors
 - 01 Geiger tubes
 - 02 Scintillators
 - .01 Sodium iodide
 - .02 Plastic
 - .03 Fiber
 - 03 Lithium-drifted germanium
 - 04 Transition edge detectors
- g Nuclear instrumentation
 - 01 Pulse preamps
 - 02 Pulse shapers
 - 03 Pulse height discriminators Single channel analyzers
 - 04 Scaler counters
 - 05 Fast analog-to-digital conversion
 - 06 Multichannel analyzers
 - 07 Coincidence detectors
 - 08 Time-to-pulse-height converters

43 Microscopy and micromanipulation

- a Simple lens magnification
- b Inspection microscopes
- c Optical comparators
- d Optical illumination methods
 - 01 Koehler illumination
- e Light field optical microscopy
- f Dark field optical microscopy
- g Optical polarization microscopy
- h Fluorescence microscopy
- i Light sheet fluorescence microscopy
- j Two-photon fluorescence microscopy
- k Total internal reflection fluorescence microscopy
- I Confocal microscopy
- m Fluorescence correlation microscopy
- n Ultra-resolution optical microscopy
 - 01 StED
- o Single-molecule microscopy
- p Microscope stages
- q Specimen environment control
 - 01 Temperature
 - 02 Atmosphere composiition
- r Micro-translators
- s Micropipettes
- t Laser tweezers

44 Thin films, microfabrication, and microdevices

- a Physical vapor deposition
- b Chemical vapor deposition
- c Molecular-beam epitaxy
- d Photolithography
 - 01 Photomask generation
 - 02 Mask aligners
 - 03 Etching methods
- e e-beam lithography
- f Wire bonding
- g Thin-film optics and ellipsometry
- h Microfluidics
- i Micro-electro-mechanical machines (MEMs)
- j Micro-optics and integrated optics

45 Nanoscale microscopy and measurement

- a Scanning tunneling microscope
- b Atomic force microscope
- c Magnetic force microscope
- d Near field scanned optical microscopy
- e Scanning electron microscope
- f Transmission electron microscope
- g X-ray diffraction
- h Electron diffraction
- i Neutron diffraction

See also ultra-resolution optical microscopy

46 Nanotechnology and atom manipulation

- a Nanolithography
 - 01 E-beam lithography
 - 02 Molecular beam
- b Nanoparticles
 - 01 Gold nanospheres
 - 02 Quantum dots
 - 03 Fullerenes
 - 04 Carbon nanotiubes
- c Self-assembly techniques
 - 01 Surface functionalization
 - 02 Self-assembled monolayer
 - 03 Supramolecular assembly
- d Nanotribology
- e Nanoscale fluid mechanics
- f Molecular electronics
- g AFM-based atom positioning
- h Biological nanomachines
 - 01 Molecular rotors
 - 02 Flagella
 - 03 Microtubule transporters
 - 04 Ribosome guided transcription
- i Synthetic nanomachines

47 Molecular biology methods

This is just a beginning list

- a Plasmid alteration and replication
- b DNA extraction
- c RNA extraction
- d Protein crystallization
- e Polymerase chain reaction (PCR) amplification
- f CRISPR Cas9 gene editing
- g Fluorophore attachment
- h Radiolabeling
- i Gel electrophoresis
- j Northern and Southern blots

48 Cell and microbiology methods

This is just a beginning list

- a Sterile technique
- b Laminar flow hoods
- c Cell culture
 - 01 Bacteria
 - 02 Algae
 - 03 Plant cell
 - 04 Animal cell
- d Cell counting
- e Cell flow cytometry
- f Micropipette techniques
- g Voltage-clamp methods for membrane ion conductance
- h Membrane electroporation

49 Plant and animal biology methods

This is just a beginning list

- a Plant illumination
- b Plant growth chambers
- c Standards for animal care
- d Animal feeders
- e Animal respirators
- f Animal anesthesia
- g Dissection
- h Tissue preservation

50 Biomedical devices, instrumentation, and imaging

This is far from complete.

- Personal monitoring devices
 - 01 Temperature
 - 02 Pulse rate
 - 03 Step counting
 - 04 Weight
 - 05 Blood pressure
 - 06 PO2
 - 07 Blood glucose
- b Basic examination instruments
 - 01 Stethoscope
 - 02 Otoscope (ear)
 - 03 Ophthalmoscope (eye)
 - 04 Throat
 - 05 Reflex
- c Clinical laboratory measurements
- d Electrical monitoring
 - 01 EKG
 - 02 EMG
 - 03 EKG
- e Breathing measurements
 - 01 Breathing rate
 - 02 Spirometry
 - 03 Capnography
- f Anesthesia
- g Resuscitation and life support
 - 01 Defibrillators
 - 02 Respirators
 - 03 Heart-lung machine
 - 04 Dialysis
- h Wearable or Implanted devices
 - 01 Pacemaker
 - 02 Implantable cardioverter-defibrillator
 - 03 Cochlear implant
 - 04 Insulin pump
- i Basic assistive devices
 - 01 Eyeglasses
 - 02 Hearing aids
- j Prosthetic devices
- k Thermal-based therapies
- I Radiation therapies
 - 01 Radiation treatment of cancer
 - 02 Proton therapy
 - 03 Gamma knife
- m Ultrasound imaging
- n Ultrasound blood flow measurement
- o X-Ray radiography
- p X-ray computer aided tomography

- q Magnetic resonance imaging (MRI)
- r Functional MRI
- s Positron emission tomography
- t Optical coherence tomography

51 Fieldwork and outdoor skills

- a Navigation
 - 01 GPS
 - 02 Maps
 - 03 Compass
 - 04 Sextant
 - 05 Orienteering
- b Surveying
- c Outdoor clothing
- d Backpacks
- e Sleeping gear
- f Tents and other shelters
- g Cook gear
- h Food preservation and storage
- i Fire making
- j Portable lighting
- k Water supply
- I Waste management
- m First aid and field medicine

See 01b Safety and Hazardous Materials: First Aid

- n Hazardous plants and animals
- o Injured person transport and extraction
- p Rope work and climbing gear
- q Field tools
 - 01 Multipurpose knife
 - 02 Saw
 - 03 Ax
 - 04 Shovel
 - 05 Trowel
 - 06 Brush
 - 07 Tape measure
 - 08 Duct tape
 - 09 Repair kits
- r Field notes
- s Instrument cases
- t Specimen containers and transport
- u Power for field instruments
- v Field-hardened computers
- w Location marking signs and tapes
- x Radio and other communications
- y Field workspace structures
- z Field monitoring station design and construction
- aa Supply logistics
 - 01 Human transport
 - 02 Animal transport
 - 03 Air drop
 - 04 Food

52 Extreme environments and space

This is just a beginning list

- Extreme environment types
 - 01 Desert
 - 02 High mountain
 - 03 Active volcano
 - 04 Deep caves
 - 05 Tropical rain forest
 - 06 Polar regions
 - 07 Open ocean
 - 08 Underwater
 - .01 Upper ocean
 - .02 Deep sea
 - 09 High acceleration
 - 10 Space
 - 11 Earth's moon
 - 12 Planets and their moons
 - 13 Burning building or forest
 - 14 War zone
 - 15 Biological infection hot zone
 - 16 Reactor accident sites
- b Protective clothing
 - 01 Clothing for extreme cold
 - 02 Heat resistant suits
 - 03 Biohazard suits
 - 04 Radiation protection suits
 - 05 g-Suits
 - 06 SCUBA diving gear
 - 07 Spacesuits
- c Behavior of materials in extreme environments
- d Operation of machines in extreme environments
- e Microgravity simulation
 - 01 Drop towers
 - 02 Aircraft free fall trajectories
 - 03 Sounding rocket free fall trajectories
- f Uses of microgravity